

The emergence of ZIA phases

M.A. Tunes, H.V. Tin, R.I. Neto, J.A. Valdez, S. Fensin, J.K. Baldwin, O. El-Atwani and S.A. Maloy Los Alamos National Laboratory

Advances in Powder and Ceramic Materials Science — Structure Design and Processing

Historical background

Jean Discart L'Atelier de Poterie Tangier, Morocco

Reactive Hot Pressing (RHP) and MAX Phases

392

April 24, 1965 Vol. 206

CERAMICS

NATURE

'Reactive Hot Pressing': a New Ceramic Process

REACTIVE hot pressing is a new process by which

powdered materials can be densified and matericonsiderable strength can be produced. The term 're hot pressing' is new and has been coined to distithis process from other known ceramic processes as sintering, hot pressing or pressure fabrication. (3,000-15,000 lb./in.²) on the 'reactive' solid a considinterparticle bonding can be achieved in different cematerials. Thus, this new process combines the reactivity of a solid during a phase change with preto obtain a very strong and dense material. If present investigation, hydrated silicates, hydroxidhydrated oxides and carbonates were used. The products after decomposition were oxides and silicaall cases.

A. C. D. CHAKLADER

Department of Metallurgy, University of British Columbia, Vancouver 8, Canada. Monatshefte Für Chemie, 98(2), 329–337, 1967

Die Kristallstruktur von Ti₃SiC₂ --- ein neuer Komplexcarbid-Typ

Von

W. Jeitschko und H. Nowotny Aus dem Institut für physikalische Chemie der Universität Wien

Mit 5 Abbildungen

(Eingegangen am 7. Dezember 1966)

der TiSi₂-reichen Seite angesetzt. Die Ausgangskomponenten waren Pulver von Titanhydrid (Metal Hydrides Inc., Mass., Grade E), Silicium (Péchiney, m 99,9%) und Reaktorgraphit. Die Pulvermischungen wurden in abgeschlos-1: $a = 3,06_8, c = 17,66_9$ Å und $c/a = 5,75_9$. Die Titan-Atome be-

setzen die Punktlagen 2a) Atome die Punktlage 2b) un lage 4f) ($z_{\rm C} = 0.567_5$) in der Struktur gehört zu den K Bauelementen [$T_{\rm C}$ C].

The crystal structure of means of single crystal phothes the hexagonal cell were four and $c/a = 5.75_9$. The titania and 4f) ($z_{\rm Ti} = 0.135$), the atoms 4f) ($z_{\rm C} = 0.567_5$) of the crystal structure type belong having octahedral groups [T].

journal

Abb. 1. Unverformter Kristall (hexagonale Symmetrie) und verformte Kristalle von Ti₃SiC₂, 50-fach

J. Am. Ceram. Soc., 79 [7] 1953-56 (1996)

Synthesis and Characterization of a Remarkable Ceramic: Ti₃SiC₂

Michel W. Barsoum' and Tamer El-Raghy

Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania 19104

Polycrystalline bulk samples of Ti₃SiC₂ were fabricated by reactively hot-pressing Ti, graphite, and SiC powders at 40 MPa and 1600°C for 4 h. This compound has remarkable properties. Its compressive strength, measured at room temperature, was 600 MPa, and dropped to 260 MPa at 1300°C in air. Although the room-temperature failure was brittle, the high-temperature load-displacement curve shows significant plastic behavior. The oxidation is parabolic and at 1000° and 1400°C the parabolic rate constants were, respectively, 2×10^{-8} and 2×10^{-5} kg²·m⁻⁴·s⁻¹. The activation energy for oxidation is thus ≈ 300 kJ/mol. The room-temperature electrical conductivity is 4.5×10^6 $\Omega^{-1} \cdot m^{-1}$, roughly twice that of pure Ti. The thermal expansion coefficient in the temperature range 25° to 1000°C, the room-temperature thermal conductivity, and the heat capacity are respectively, $10 \times 10^{-6} \, {}^{\circ}\mathrm{C}^{-1}$, 43 W/(m·K), and 588 J/(kg·K). With a hardness of 4 GPa and a Young's modulus of 320 GPa, it is relatively soft, but reasonably stiff. Furthermore, Ti₃SiC₂ does not appear to be susceptible to thermal shock; quenching from 1400°C into water does not affect the postquench bend strength. As significantly, this compound is as readily machinable as graphite. Scanning electron microscopy of polished and fractured surfaces leaves little doubt as to its layered nature.

Professor Barsoum's MAX Phases Empire in 2021

Source: Wikipedia.org

1A 1 H 1.0079	4 2A		$\mathbf{\Lambda}$	$\overline{\Lambda}$					$\left \right\rangle$	\langle	7	ЗA	4A	5A	6A	7A	8A 2 He
3 Li 6.941	4 Be 9.01218			/ L	n	+1					'n	5 B 10.811	6 C 12 0107	7 N 14.0067	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22 9897	12 Mg 69 24.3050	3В	4B	5B	6B	7B		— 8B —		1B	2B	13 AI 26 9815386	14 Si 28.0855	15 P 30.973762	16 S 32.065	17 CI 35.453	18 Ar 39.948
19 K 39.098	20 Ca 3 40.078	21 Sc 44.955912	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938045	26 Fe 55.845	27 Co 58.933195	28 Ni 58.6934	29 Cu 63 546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.64	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.798
37 Rb 85.467	38 Sr 8 87.62	39 Ƴ 88 90585	40 Zr 91.224	41 Nb 92 90638	42 Mo 95.96	43 Tc [98]	44 Ru 101.07	45 Rh 102 90550	46 Pd 106.42	47 Ag 107 8682	48 Cd 112411	49 In 114.818	50 Sn 118.710	51 Sb 121 760	52 Te 127.60	53 126 90447	54 Xe 131.293
55 Cs 132.9054	56 Ba 519 137.327	57-71 Lanthanides	72 Hf 178.49	73 Ta 180.94788	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.084	79 Au 196.966569	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208.98040	84 Po (209)	85 At [210]	86 Rn [222]
87 Fr 223	88 Ra [226]	89-103 Actinides	104 Rf [267]	105 Db [268]	106 Sg [271]	107 Bh [272]	108 Hs [270]	109 Mt [276]	110 Ds [281]	111 Rg [280]	112 Uub [285]	113 Uut [284]	114 Uuq [289]	115 Uup [288]	116 Uuh ^[293]	117 Uus [294]	118 Uuo [294]
anthanides			57 La 138.90547	58 Ce 140.116	59 Pr 140 90765	60 Nd 144.242	61 Pm [145]	62 Sm 150.36	63 Eu 151.964	64 Gd 157.25	65 Tb 158 92535	66 Dy 162.500	67 Ho 164.93032	68 Er 167 259	69 Tm 168.93421	70 Yb 173.054	71 Lu 174.9668
Actinides		89 Ac [227]	90 Th 232.03806	91 Pa 231.03588	92 U 238.02891	93 Np [237]	94 Pu [244]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	103 Lr [262]	

Goossens, N., Tunca, B., Lapauw, T., Lambrinou, K., & Vleugels, J. (2021) MAX phases, structure, processing, and properties. *Encyclopedia of Materials: Technical Ceramics and Glass*es, 2–3, 182–199

We are interested in materials for application in extreme environments: high-temperature and irradiation. And MAX Phases...

Acta Materialia 169 (2019) 237-247

Full length article

A Transmission Electron Microscopy study of the neutron-irradiation response of Ti-based MAX phases at high temperatures

Matheus A. Tunes ^{a, *}, Robert W. Harrison ^b, Stephen E. Donnelly ^a, Philip D. Edmondson ^c

^a School of Computing and Engineering, University of Huddersfield, Queensgate, HD1 3DH, Huddersfield, United Kingdom
^b School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, M1 3NJ, Manchester, United Kingdom
^c Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States

Project's Outline

- Work-to-date and main objectives.
- The ZIA phases project.
 - Synthesis and characterization: SEM, EDX, and TEM
- Potential of ZIA phases in extreme environments.

Work-to-date

Can we extend the MAX phase concept beyond carbides and nitrides? Yes, intermetallic silicides!

THE CRYSTAL STRUCTURES OF Mn₃Ni₂Si, V₃Ni₂Si,

Nb3Ni2Si AND RELATED Cr AND Ta COMPOUNDS

E. I. Gladyshevskii, Yu. B. Kuz'ma, and P. I. Kripyakevich

I. Franko L'vovsk State University Translated from Zhurnal Strukturnoi Khimii, Vol. 4, No. 3, pp. 372-379, May-June, 1963 Original article submitted February 6, 1962

The existence was established of ternary R_3Ni_2Si compounds (R = Mn, V, Nb), of the η -phase structure type (space group Fd3m - $O_{\rm h}^7$, Z = 16) with completely ordered distributions of all component atoms. Compounds of the η -phase type, with similar but undetermined compositions, are found in the Cr-Ni-Si and Ta-Ni-Si systems.

together Mn (electrolytic), Ni (99.9%) and Si (99.5%) in a porcelain crucible, using a high-frequency furnace (hydrogen atmosphere). As the alloying was not accompanied by combustion, a chemical analysis was not carried out. Three specimens were used in the x-ray analysis: 1) a cast specimen (no heat treatment); 2) a specimen annealed at 1000° for 24 hr; 3) a specimen annealed at 800° for 120 hr. Annealing was carried out in evacuated quartz am-

The η -phase in the Nb-Ni-Si system was also obtained in an almost pure state (see Fig. 2).

Fig. 2. Microstructure of the alloy Nb_3Ni_2Si (composition of materials used). Magnification 200.

ING 2022 130TH ANNUAL MEETINU & EARIDITION www.tms.org/TMS2022 • #TMSAnnualMeeting

10

Re-assessing the Nb-Si-Ni system: 2020. We are looking for the H-phase again!

Journal of Alloys and Compounds 842 (2020) 155373

	Contents lists available at ScienceDirect													
8-3 6-4	Journal of Alloys and Compounds		Sample	Sample Composition (at%)		t%)	Phase	Phase Composition (at%)		t%)	Space Group	Lattice Parameters (Å)		
	Journal of Anoys and Compounds			Nb	Ni	Si	· ···· ·	Nb	Ni	Si		a	В	с
ELSEVIER	journal homepage: http://www.elsevier.com/locate/jalcom	miteriakoday	V06T-2	45.56	34.57	19.88	Laves T <mark>H</mark>	34.06 64.44 <mark>49.69</mark>	44.48 13.7 <mark>34.96</mark>	21.44 21.87 15.35	P63/mmc P4/mcc Fd-3mS	4.82 6.18 11.17		7.79 5.03
Experimental refractory allo Vinícius O. dos Sa * Escola Politécnica da Univers São Paulo, SP, Brazil * University of Vienna, Faculty * Escola de Engenharia de Lore The sam material of argon for 336 h 800°C/120 800°C/100 1050°C/33	investigation of phase equilibria in the Nb–Ni–Si by system at 1323 K intos ^{a, b} , Luiz T.F. Eleno ^c , Cláudio G. Schön ^{a, *} , Klaus W. Richter ^b idade de São Paulo, Department of Metallurgical and Materials Engineering, Av. Prof. Mello Moraes, 2463, CEP 05508-030, of Chemistry, Department of Inorganic Chemistry - Functional Materials, Althanstrasse 14, 1090, Vienna, Austria and a Universidade de São Paulo, Department of Materials Engineering, Brazil pless were first arc-melted under Ar using Zr as gettra and then encapsulated in quartz tubes under low pressur and homogenized at 1323 K. The samples were annealed in all series. After the prescribed times the capsules were D h: Gladyshevskii et al. 196 20 h: us, 2019. 36 h: us, 2020.	$\mathbf{\hat{2}}_{\mathbf{N}_{i}}^{\mathbf{P}_{i}$	Liquid O V V Nbr	d G Vi ₃	Si · · · · · ·		23 K bSi ₂	Si ₃	T		H DOSi ₂	H-pha appea but ne its pu form	^{0 μm} ise ars, ever re	in

TMS 2022 150th Annual meeting & exhibition www.tms.org/TMS2022 • #TMSAnnualMeeting

The ZIA phases project Zig-zag Intermetallic Advanced phases

- It is a challenge to synthesize and stabilize the H-phase.
- We brought this problem to LANL.
- We want to understand if:
 - R₃SiNi₂ compounds with R = Nb, Mo, Ta, Hf, W ... represent a novel class of materials.
 - If this novel class can be applied in extreme environments.

Using arc melting, we produced a sample with the Nb₃SiNi₂ stoichiometry

> First objective: Find the H-phase (Nb₃SiNi₂)

H-phase has been found in the as-cast sample

Expected Compositions H Phase Nb3 Si Ni2 Stoichiometry at.% Ratios Nb/Si Nb 50% 3 3 1.5 Nb/Ni Si 17% Ni 33% 2

Measured Compositions

Element	Weight %	MDL	Atomic %	Net Int.	Error %
Si K	8.26	0.04	20.08	4348.72	6.56
Ni K	29.16	0.13	33.92	5116.37	2.68
Nb L	62.59	0.09	46.00	15333.20	5.19

- Si is overestimated by EDX.
- Equilibrium not attained.
- Compositions may also be slightly off.

We decided to do TEM on the H-phase field (as-cast)

A distinct nanolayered structure has been observed!

Summary of the sample as-cast

1. The Nb—Si—Ni system with 312 stoichiometry is not under equilibrium.

2. H-phase field has been observed at RT (for the first time) using arc melting.

3. H-phase is indeed a nanolayered superstructure.

- 4. Next steps:
 - New HT routes.

- Will the system converge to the Hphase pure?

- Investigating different synthesis methodologies?

Potential application of ZIA phases

In situ TEM ion irradiation at the Argonne National Laboratory (IVEM Facility)

Work in partnership with Dr. H.V. Tin (LANL)

ANL-IVEM Irradiations at 573 K: ~0.1 dpa

ANL-IVEM Irradiations at 573 K: ~1.0 dpa

ANL-IVEM Irradiations at 1073 K

Summary of the Project

- A novel class of ternary silicides is emerging, thus extending the MAX phase concept beyond carbides and nitrides.
- Challenge is to produce a pure ZIA phase: as so it is for MAX phases.
- Refractory nanolayered intermetallic-ceramic compounds. Mechanical properties? Physical-chemical properties? And so on...
- Promising application in high-temperature irradiation environments. (although we tested only as-cast sample seemly off equilibrium/stabilization).

Thank you!

tunes@lanl.gov

materialsatextremes.wordpress.com

HT results

800°C for 120 hours: Gladyshevskii et al. 1962 800°C for 1000 hours: us, 2019. 1050°C for 336 hours: us, 2020. 1148°C for 336 hours: LANL, 2022.

XRD as-cast and HT

2θ (degrees)

27